Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Nanomaterials (Basel) ; 14(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38607172

RESUMO

Zinc oxide nanoparticles (ZnO NPs) have been investigated due to their distinct properties, variety of structures and sizes, and mainly for their antimicrobial activity. They have received a positive safety evaluation from the European Food Safety Authority (EFSA) for packaging applications as transparent ultraviolet (UV) light absorbers based on the absence of significant migration of zinc oxide in particulate form. ZnO NPs with different morphologies (spherical, flower, and sheet) have been synthesized via different sol-gel methods and extensively characterized by several solid-state techniques, namely vibrational spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS), Fourier Transform Infrared Spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-VIS), electron paramagnetic resonance (EPR), and nitrogen adsorption-desorption isotherms. The ZnO NPs were assessed for their antibacterial activity against Escherichia coli (gram-negative bacteria) and Staphylococcus aureus (gram-positive bacteria) to study the influence of morphology and size on efficacy. ZnO NPs with different morphologies and sizes demonstrated antimicrobial activity against both bacteria. The highest microbial cell reduction rate (7-8 log CFU mL-1 for E. coli and 6-7 log CFU mL-1 for S. aureus) was obtained for the sheet- and spherical-shaped NPs as a result of the high specific surface area. In fact, the higher surface areas of the sheet- and spherical-shaped nanoparticles (18.5 and 13.4 m2 g-1, respectively), compared to the flower-shaped NPs (5.3 m2g-1), seem to promote more efficient bacterial cell reduction. The spherical-shaped particles were also smaller (31 nm) compared with the flower-shaped (233 × 249 nm) ones. The flower ZnO NP resulted in a 4-5 log CFU mL-1 reduction for E. coli and 3-4 log CFU mL-1 reduction for S. aureus. The lower apparent antibacterial activity of the flower-shaped could be associated with either the lack of defects on the particle core or the shape shielding effect. Compared to S. aureus, E. coli seems to be less resistant to ZnO NPs, which may be explained by the characteristics of its cell membrane. With simple synthesis techniques, which do not allow the size and shape of the nanoparticles to be controlled simultaneously, it is a challenge to elucidate the effect of each of these two parameters on antibacterial performance.

2.
Biosensors (Basel) ; 14(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38667155

RESUMO

Gold nanoparticles (AuNPs) exhibit improved optical and spectral properties compared to bulk materials, making them suitable for the detection of DNA, RNA, antigens, and antibodies. Here, we describe a simple, selective, and rapid non-cross linking detection assay, using approx. 35 nm spherical Au nanoprobes, for a common mutation occurring in exon 19 of the epidermal growth factor receptor (EGFR), associated with non-small-cell lung cancer cells. AuNPs were synthesized based on the seed-mediated growth method and functionalized with a specific 16 bp thiolated oligonucleotide using a pH-assisted method. Both AuNPs and Au nanoprobes proved to be highly stable and monodisperse through ultraviolet-visible spectrophotometry, dynamic light scattering (DLS), and electrophoretic light scattering (ELS). Our results indicate a detection limit of 1.5 µg mL-1 using a 0.15 nmol dm-3 Au nanoprobe concentration. In conclusion, this work presents an effective possibility for a straightforward, fast, and inexpensive alternative for the detection of DNA sequences related to lung cancer, leading to a potential platform for early diagnosis of lung cancer patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Ouro , Neoplasias Pulmonares , Nanopartículas Metálicas , Ouro/química , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Receptores ErbB/genética , Nanopartículas Metálicas/química , Neoplasias Pulmonares/diagnóstico , Técnicas Biossensoriais , Detecção Precoce de Câncer
4.
Int J Cardiovasc Imaging ; 40(2): 341-350, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37981631

RESUMO

PURPOSE: Low-flow status is a mortality predictor in severe aortic stenosis (SAS) patients, including after transcatheter aortic valve implantation (TAVI) treatment. However, the best parameter to assess flow is unknown. Recent studies suggest that transaortic flow rate (FR) is superior to currently used stroke volume index (SVi) in defining low-flow states. Therefore, we aimed to evaluate the prognostic value of FR and SVi in patients undergoing TAVI. METHODS: A single-centre retrospective analysis of all consecutive patients treated with TAVI for SAS between 2011 and 2019 was conducted. Low-FR was defined as < 200 mL/s and low-SVi as < 35 mL/m2. Primary endpoint was all-cause five-year mortality, analyzed using Kaplan-Meier curves and Cox regression models. Secondary endpoint was variation of NYHA functional class six months after procedure. Patients were further stratified according to ejection fraction (EF < 50%). RESULTS: Of 489 cases, 59.5% were low-FR, and 43.1% low-SVi. Low-flow patients had superior surgical risk, worse renal function, and had a higher prevalence of coronary artery disease. Low-FR was associated with mortality (hazard ratio 1.36, p = 0.041), but not after adjustment to EuroSCORE II. Normal-SVi was not associated with survival, despite a significative p-trend for its continuous value. No associations were found for flow-status and NYHA recovery. When stratifying according to preserved and reduced EF, both FR and SVi did not predict all-cause mortality. CONCLUSION: In patients with SAS undergoing TAVI, a low-FR state was associated with higher mortality, as well as SVi, but not at a 35 mL/m2 cut off.


Assuntos
Estenose da Valva Aórtica , Implante de Prótese de Valva Cardíaca , Substituição da Valva Aórtica Transcateter , Humanos , Prognóstico , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/cirurgia , Estenose da Valva Aórtica/complicações , Estudos Retrospectivos , Implante de Prótese de Valva Cardíaca/métodos , Fatores de Risco , Valor Preditivo dos Testes , Substituição da Valva Aórtica Transcateter/efeitos adversos , Volume Sistólico , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/cirurgia , Índice de Gravidade de Doença , Resultado do Tratamento
5.
Analyst ; 148(17): 4053-4063, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37529888

RESUMO

Early and accurate detection of infection by pathogenic microorganisms, such as Plasmodium, the causative agent of malaria, is critical for clinical diagnosis and ultimately determines the patient's outcome. We have combined a polystyrene-based microfluidic device with an immunoassay which utilises Surface-Enhanced Raman Spectroscopy (SERS) to detect malaria. The method can be easily translated to a point-of-care testing format and shows excellent sensitivity and specificity, when compared to the gold standard for laboratorial detection of Plasmodium infections. The device can be fabricated in less than 30 min by direct patterning on shrinkable polystyrene sheets of adaptable three-dimensional microfluidic chips. To validate the microfluidic system, samples of P. falciparum-infected red blood cell cultures were used. The SERS-based immunoassay enabled the detection of 0.0012 ± 0.0001% parasitaemia in a P. falciparum-infected red blood cell culture supernatant, an ∼7-fold higher sensitivity than that attained by most rapid diagnostic tests. Our approach successfully overcomes the main challenges of the current Plasmodium detection methods, including increased reproducibility, sensitivity, and specificity. Furthermore, our system can be easily adapted for detection of other pathogens and has excellent properties for early diagnosis of infectious diseases, a decisive step towards lowering their high burden on healthcare systems worldwide.


Assuntos
Malária Falciparum , Malária , Parasitos , Plasmodium , Humanos , Animais , Poliestirenos , Plasmodium falciparum , Reprodutibilidade dos Testes , Malária/diagnóstico , Malária Falciparum/diagnóstico , Sensibilidade e Especificidade , Dispositivos Lab-On-A-Chip
6.
Biosensors (Basel) ; 13(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36831915

RESUMO

The development of rapid, reliable, and low-cost methods that enable discrimination among clinically relevant bacteria is crucial, with emphasis on those listed as WHO Global Priority 1 Critical Pathogens, such as carbapenem-resistant Acinetobacter baumannii and carbapenem-resistant or ESBL-producing Klebsiella pneumoniae. To address this problem, we developed and validated a protocol of surface-enhanced Raman spectroscopy (SERS) with silver nanostars for the discrimination of A. baumannii and K. pneumoniae species, and their globally disseminated and clinically relevant antibiotic resistant clones. Isolates were characterized by mixing bacterial colonies with silver nanostars, followed by deposition on filter paper for SERS spectrum acquisition. Spectral data were processed with unsupervised and supervised multivariate data analysis methods, including principal component analysis (PCA) and partial least-squares discriminant analysis (PLSDA), respectively. Our proposed SERS procedure using silver nanostars adsorbed to the bacteria, followed by multivariate data analysis, enabled differentiation between and within species. This pilot study demonstrates the potential of SERS for the rapid discrimination of clinically relevant A. baumannii and K. pneumoniae species and clones, displaying several advantages such as the ease of silver nanostars synthesis and the possible use of a handheld spectrometer, which makes this approach ideal for point-of-care applications.


Assuntos
Acinetobacter baumannii , Klebsiella pneumoniae , Prata/química , Projetos Piloto , Análise Espectral Raman/métodos , Carbapenêmicos , Bactérias , Células Clonais
8.
J Mater Chem B ; 9(36): 7516-7529, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551048

RESUMO

The development of robust and sensitive point-of-care testing platforms is necessary to improve patient care and outcomes. Surface-enhanced Raman scattering (SERS)-based immunosensors are especially suited for this purpose. Here, we present a highly sensitive and selective SERS immunoassay, demonstrating for example the detection of horseradish peroxidase (HRP), in a sandwich format. The strength of our biosensor lies in merging: (i) SERS-immunotags based on gold nanostars, allowing exceptional intense SERS from attached Raman probes, covalent attachment of anti-HRP antibodies by a simple chemical method providing exceptional antigen binding activity; (ii) the ease of preparation of the capture platform from a regenerated cellulose-based hydrogel, a transparent material, ideal for microfluidics applications, with low background fluorescence and Raman signal, particularly suited for preserving high activity of the covalently bound anti-HRP antibodies. The sandwich complexes formed were characterised by atomic force microscopy, and by scanning electron microscopy coupled with electron diffraction spectroscopy; and (iii) the robustness of the simple Classical Least Squares method for SERS data analysis, resulting in superior discrimination of SERS signals from the background and much better data fitting, compared to the commonly used peak integral method. Our SERS immunoassay greatly improves the detection limits of traditional enzyme-linked immunosorbent assay approaches, and its performance is better or comparable to those of existing SERS-based immunosensors. Our approach successfully overcomes the main challenges of application at point-of-care, including increasing reproducibility, sensitivity, and specificity, associated with an environmentally friendly and robust design. Also, the proposed design withstands several cycles of regeneration, a feature absent in paper-SERS immunoassays and this opens the way for sensitive multiplexing applications on a microfluidic platform.


Assuntos
Celulose/química , Ouro/química , Peroxidase do Rábano Silvestre/análise , Hidrogéis/química , Imunoensaio/métodos , Nanopartículas Metálicas/química , Peroxidase do Rábano Silvestre/imunologia , Limite de Detecção , Sistemas Automatizados de Assistência Junto ao Leito , Reciclagem , Reprodutibilidade dos Testes , Análise Espectral Raman
9.
Nanomaterials (Basel) ; 11(8)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34443896

RESUMO

Toxoplasmosis is the most reported parasitic zoonosis in Europe, with implications in human health and in the veterinary field. There is an increasing need to develop serotyping of Toxoplasma gondii (T. gondii) in view of greater sensitivity and efficiency, through the definition of new targets and new methodologies. Nanotechnology is a promising approach, with impact in the development of point-of-care devices. The aim of this work was to develop a simple but highly efficient method for Toxoplasma gondii serotyping based on gold nanoparticles. A simple colorimetric method was developed using gold nanoparticles modified with the synthetic polymorphic peptide derived from GRA6 antigen specific for type II T. gondii. The method of preparation of the gold nanoprobes and the experimental conditions for the detection were found to be critical for a sensitive discrimination between positive and negative sera. The optimized method was used to detect antibodies anti-GRA6II both in mice and human serum samples. These results clearly demonstrate that a biosensor-based immunoassay using AuNPs conjugated with polymorphic synthetic peptides can be developed and used as a serotyping device.

10.
Pharmaceutics ; 13(3)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804636

RESUMO

In this study, we report the synthesis of gold-coated iron oxide nanoparticles capped with polyvinylpyrrolidone (Fe@Au NPs). The as-synthesized nanoparticles (NPs) exhibited good stability in aqueous media and excellent features as contrast agents (CA) for both magnetic resonance imaging (MRI) and X-ray computed tomography (CT). Additionally, due to the presence of the local surface plasmon resonances of gold, the NPs showed exploitable "light-to-heat" conversion ability in the near-infrared (NIR) region, a key attribute for effective photothermal therapies (PTT). In vitro experiments revealed biocompatibility as well as excellent efficiency in killing glioblastoma cells via PTT. The in vivo nontoxicity of the NPs was demonstrated using zebrafish embryos as an intermediate step between cells and rodent models. To warrant that an effective therapeutic dose was achieved inside the tumor, both intratumoral and intravenous routes were screened in rodent models by MRI and CT. The pharmacokinetics and biodistribution confirmed the multimodal imaging CA capabilities of the Fe@AuNPs and revealed constraints of the intravenous route for tumor targeting, dictating intratumoral administration for therapeutic applications. Finally, Fe@Au NPs were successfully used for an in vivo proof of concept of imaging-guided focused PTT against glioblastoma multiforme in a mouse model.

11.
Toxicol In Vitro ; 70: 105046, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33147519

RESUMO

Gold nanoparticles (AuNPs) have huge potential for various biomedical applications, but their successful use depends on their uptake and possible toxicity in the liver, their main site for accumulation. Therefore, in this work we compared the cytotoxic effects induced by AuNPs with different size (~ 15 nm and 60 nm), shape (nanospheres and nanostars) and capping [citrate- or 11-mercaptoundecanoic acid (MUA)], in human HepaRG cells or primary rat hepatocytes (PRH) cultivated with serum-free or Foetal Bovine Serum (FBS)-supplemented media. The safety assessment of the AuNPs demonstrated that overall they present low toxicity towards hepatic cells. Among all the tested AuNPs, the smaller 15 nm spheres displayed the highest toxicity. The toxicological effect was capping, size and cell-type dependent with citrate-capping more toxic than MUA (PRH with FBS), the 15 nm AuNPs more toxic than 60 nm counterparts and PRH more sensitive, as compared to the HepaRG cells. The incubation with FBS-free media produced aggregation of AuNPs while its presence greatly influenced the toxicity outcomes. The cellular uptake of AuNPs was shape, size and capping dependent in PRH cultivated in FBS-supplemented media, and significantly different between the two types of cells with extensively higher internalization of AuNPs in PRH, as compared to the HepaRG cells. These data show that the physical-chemical properties of AuNPs, including size and shape, as well as the type of cellular model, greatly influence the interaction of the AuNPs with the biological environment and consequently, their toxicological effects.


Assuntos
Ouro/toxicidade , Hepatócitos/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Animais , Transporte Biológico , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Masculino , Ratos Wistar
12.
Artigo em Inglês | MEDLINE | ID: mdl-33126532

RESUMO

Bacterial proliferation on certain surfaces is of concern as it tends to lead to infectious health problems. Nanotechnology is offering new options for engineering antimicrobial surfaces. Herein, the antibiofilm and biocidal properties of star-shaped silver nanoparticles (AgNSs) in suspension and as coating surfaces were studied. AgNSs and spherical silver nanoparticles (AgNPs) (used for comparison purposes) were synthesized using reported methods. Glass disks (9 mm diameter) were covered with AgNSs using deposition by centrifugation. Minimum inhibitory concentrations (MICs) of AgNSs and AgNPs were determined against several reference strains and multidrug-resistant isolates and their antibiofilm activity was assessed against preformed biofilms of Pseudomonas aeruginosa and Staphylococcus aureus by both Live/Dead staining and atomic force microscopy (AFM). The antimicrobial properties of AgNSs-coated surfaces were evaluated by the "touch test" method on agar, and also Live/Dead staining and AFM. The MIC values of the AgNSs were 2-4 times lower than those of the AgNPs. Biofilms treated with AgNSs at a concentration equal to the MIC were not significantly affected, although they exhibited more dead cells than the non-treated biofilms. The biocidal activity of AgNSs-coated surfaces was attested, since no growth on agar nor viable cells were observed after contact of the inoculated bacteria with the coated surface for 6 and 24 h. Thus, AgNSs show greater potential as a surface coating with biocidal effects than used as suspension for antimicrobial purposes.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Nanopartículas Metálicas , Prata , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Prata/farmacologia , Staphylococcus aureus/efeitos dos fármacos
13.
Nanomaterials (Basel) ; 10(5)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32455923

RESUMO

Gold nanoparticles (AuNPs) are highly attractive for biomedical applications. Therefore, several in vitro and in vivo studies have addressed their safety evaluation. Nevertheless, there is a lack of knowledge regarding their potential detrimental effect on human kidney. To evaluate this effect, AuNPs with different sizes (13 nm and 60 nm), shapes (spheres and stars), and coated with 11-mercaptoundecanoic acid (MUA) or with sodium citrate, were synthesized, characterized, and their toxicological effects evaluated 24 h after incubation with a proximal tubular cell line derived from normal human kidney (HK-2). After exposure, viability was assessed by the MTT assay. Changes in lysosomal integrity, mitochondrial membrane potential (ΔΨm), reactive species (ROS/RNS), intracellular glutathione (total GSH), and ATP were also evaluated. Apoptosis was investigated through the evaluation of the activity of caspases 3, 8 and 9. Overall, the tested AuNPs targeted mainly the mitochondria in a concentration-dependent manner. The lysosomal integrity was also affected but to a lower extent. The smaller 13 nm nanospheres (both citrate- and MUA-coated) proved to be the most toxic among all types of AuNPs, increasing ROS production and decreasing mitochondrial membrane potential (p ≤ 0.01). For the MUA-coated 13 nm nanospheres, these effects were associated also to increased levels of total glutathione (p ≤ 0.01) and enhanced ATP production (p ≤ 0.05). Programmed cell death was detected through the activation of both extrinsic and intrinsic pathways (caspase 8 and 9) (p ≤ 0.05). We found that the larger 60 nm AuNPs, both nanospheres and nanostars, are apparently less toxic than their smaller counter parts. Considering the results herein presented, it should be taken into consideration that even if renal clearance of the AuNPs is desirable, since it would prevent accumulation and detrimental effects in other organs, a possible intracellular accumulation of AuNPs in kidneys can induce cell damage and later compromise kidney function.

14.
Nanotechnology ; 31(19): 195102, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31962292

RESUMO

Gold nanoparticles (AuNPs) are highly attractive to biomedical applications. Here, we investigated the effects of (i) ca. 15 nm spherical AuNPs capped with citrate or 11-mercaptoundecanoic acid (MUA) and (ii) ca. 60 nm spherical citrate-capped AuNPs, and ca. 60 nm MUA-capped star-shaped AuNPs on the cytotoxicity, cellular uptake and permeability, using media supplemented or not with 1% fetal bovine serum (FBS) on caucasian colon adenocarcinoma Caco-2 cells. In addition, the colloidal stability of the nanoparticles in media (supplemented or not) was assessed after 24 h-incubations at 60 µM. The 60 nm gold nanospheres and stars were administrated orally to Wistar rats in order to evaluate their systemic absorption and biodistribution after 24 h. At non-supplemented media settings, citrate-capped gold nanoparticles seem to be more toxic than their MUA-capped counterparts. Also, smaller nanoparticles show higher toxicity than larger ones. The use of cell culture media with 1% FBS not only increased the stability of all AuNPs, as also significantly reduced their cytotoxicity. In the uptake studies, higher AuNPs incorporation was noticed in serum supplemented media, this effect being particularly significant for the 60 nm nanoparticles. Cellular incorporation depended also on the capping agent and size. None of the tested samples crossed the in vitro intestinal barrier. Confirming the in vitro results, the in vivo biodistribution study of the 60 nm AuNPs orally given to rats showed that their systemic absorption is low and that they are mainly eliminated through the faeces. Altogether, these preliminary results suggest that our novel AuNPs have high potential to be considered promising candidates for application in diagnostics or drug delivery at the intestinal level, showing high biocompatibility. However, unless it is desired that these nanomaterials avoid systemic absorption upon oral administration, additional functionalization should be sought to increase their low bioavailability.


Assuntos
Ouro/administração & dosagem , Intestinos/química , Intestinos/citologia , Administração Oral , Animais , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ácido Cítrico/química , Ouro/química , Ouro/farmacocinética , Humanos , Intestinos/efeitos dos fármacos , Nanopartículas Metálicas , Tamanho da Partícula , Permeabilidade , Ratos , Ratos Wistar , Distribuição Tecidual
15.
Nanomaterials (Basel) ; 9(11)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726761

RESUMO

Gold nanoparticles (AuNPs) are promising nanoplatforms for drug therapy, diagnostic and imaging. However, biological comparison studies for different types of AuNPs fail in consistency due to the lack of sensitive methods to detect subtle differences in the expression of toxicity. Therefore, innovative and sensitive approaches such as metabolomics are much needed to discriminate toxicity, specially at low doses. The current work aims to compare the in vivo toxicological effects of gold nanospheres versus gold nanostars (of similar ~40 nm diameter and coated with 11-mercaptoundecanoic acid) 24 h after an intravenous administration of a single dose (1.33 × 1011 AuNPs/kg) to Wistar rats. The biodistribution of both types of AuNPs was determined by graphite furnace atomic absorption spectroscopy. The metabolic effects of the AuNPs on their main target organ, the liver, were analyzed using a GC-MS-based metabolomic approach. Conventional toxicological endpoints, including the levels of ATP and reduced and oxidized glutathione, were also investigated. The results show that AuNPs preferentially accumulate in the liver and, to a lesser extent, in the spleen and lungs. In other organs (kidney, heart, brain), Au content was below the limit of quantification. Reduced glutathione levels increased for both nanospheres and nanostars in the liver, but ATP levels were unaltered. Multivariate analysis showed a good discrimination between the two types of AuNPs (sphere- versus star-shaped nanoparticles) and compared to control group. The metabolic pathways involved in the discrimination were associated with the metabolism of fatty acids, pyrimidine and purine, arachidonic acid, biotin, glycine and synthesis of amino acids. In conclusion, the biodistribution, toxicological, and metabolic profiles of gold nanospheres and gold nanostars were described. Metabolomics proved to be a very useful tool for the comparative study of different types of AuNPs and raised awareness about the pathways associated to their distinct biological effects.

16.
Nanomaterials (Basel) ; 9(11)2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31689919

RESUMO

Immunoassays using Surface-Enhanced Raman Spectroscopy are especially interesting on account not only of their increased sensitivity, but also due to its easy translation to point-of-care formats. The bases for these assays are bioconjugates of polyclonal antibodies and anisotropic gold nanoparticles functionalized with a Raman reporter. These bioconjugates, once loaded with the antigen analyte, can react on a sandwich format with the same antibodies immobilized on a surface. This surface can then be used for detection, on a microfluidics or immunochromatographic platform. Here, we have assembled bioconjugates of gold nanostars functionalized with 4-mercaptobenzoic acid, and anti-horseradish peroxidase antibodies. The assembly was by simple incubation, and agarose gel electrophoresis determined a high gold nanostar to antibody binding constant. The functionality of the bioconjugates is easy to determine since the respective antigen presents peroxidase enzymatic activity. Furthermore, the chosen antibody is a generic immunoglobulin G (IgG) antibody, opening the application of these principles to other antibody-antigen systems. Surface-Enhanced Raman Spectroscopy analysis of these bioconjugates indicated antigen detection down to 50 µU of peroxidase activity. All steps of conjugation were fully characterized by ultraviolet-visible spectroscopy, dynamic light scattering, ζ -Potential, scanning electron microscopy, and agarose gel electrophoresis. Based on the latter technique, a proof-of-concept was established for the proposed immunoassay.

17.
Front Chem ; 7: 368, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31179273

RESUMO

Surface-enhanced Raman Spectrosocopy (SERS) is a highly sensitive form of Raman spectroscopy, with strong selectivity for Raman-active molecules adsorbed to plasmonic nanostructured surfaces. Extremely intense Raman signals derive from "hotspots", generally created by the aggregation of a silver nanospheres colloid. An alternative and cleaner approach is the use of anisotropic silver nanoparticles, with intrinsic "hotspots", allowing a more controlled enhancement effect as it is not dependent on disordered nanoparticle aggregation. Here, a simple SERS-based test is proposed for Portuguese white wines fingerprinting. The test is done by mixing microliter volumes of a silver nanostars colloid and the white wine sample. SERS spectra obtained directly from these mixtures, with no further treatments, are analyzed by principal component analysis (PCA), using a dedicated software. Depending on the duration of the incubation period, different discrimination can be obtained for the fingerprinting. A "mix-and-read" approach, with practically no incubation, allows for a simple discrimination between the three white wines tested. An overnight incubation allows for full discrimination between varieties of wine (Verde or Maduro), as well as between wines from different Maduro wine regions. This use of SERS in a straightforward, fast and inexpensive test for wine fingerprinting, avoiding the need for prior sample treatment, paves the way for the development of a simple and inexpensive authenticity assay for wines from specific appellations.

18.
Nanotoxicology ; 13(7): 990-1004, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31106633

RESUMO

Gold nanoparticles (AuNPs) have biomedical application on imaging and due to increased optical performance, star-shaped AuNPs are of special interest. Because shape, size and capping greatly influence their toxicokinetics and toxicodynamics, a systematic multiparametric comparative study of the influence of these parameters on the cytotoxicity, internalization, and in vitro permeability was conducted in human Cerebral Microvascular Endothelial Cell line (hCMEC/D3), an in vitro model of the human blood-brain barrier (BBB). AuNPs of different size (14 nm and ∼50 nm), shape (spheres and stars), and coating (11-mercaptoundecanoic acid or MUA and sodium citrate) were synthesized and fully characterized. The time- and concentration-dependent cytotoxic profile of the tested AuNPs differed for the different AuNPs. Generally, toxicity was greater for stars relative to sphere-shaped AuNPs, and citrate coating was more toxic than MUA. Regarding the influence of size, smaller-sized AuNPs were more cytotoxic when compared at the same Au concentration. However, when the concentration of AuNPs was expressed as the number of AuNPs/mL, a higher degree of cytotoxicity was noted for the larger ̴50 nm AuNPs. To understand the influence of size, shape and capping, a systematic study design, in which only one of the variables changes, is determinant for correct data interpretation. Considering the results herein presented, for the sake of comparison of differently-sized AuNPs, it is preferable to design the study based upon the number of nanoparticles, since at a fixed Au concentration the number of particles available to promote effect is higher for smaller-sized AuNPs. Cellular internalization also differed among the tested AuNPs; although all were unable to cross the in vitro BBB, the intracellularly accumulated AuNPs can induce cell damage and later compromise BBB integrity and permeability.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ácidos Graxos/farmacologia , Ouro/farmacocinética , Humanos , Tamanho da Partícula , Permeabilidade , Compostos de Sulfidrila/farmacologia
20.
Nanomaterials (Basel) ; 9(2)2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30781838

RESUMO

Progress in the field of biocompatible SERS nanoparticles has promising prospects for biomedical applications. In this work, we have developed a biocompatible Raman probe by combining anisotropic silver nanoparticles with the dye rhodamine 6G followed by subsequent coating with bovine serum albumin. This nanosystem presents strong SERS capabilities in the near infrared (NIR) with a very high (2.7 × 107) analytical enhancement factor. Theoretical calculations reveal the effects of the electromagnetic and chemical mechanisms in the observed SERS effect for this nanosystem. Finite element method (FEM) calculations showed a considerable near field enhancement in NIR. Using density functional quantum chemical calculations, the chemical enhancement mechanism of rhodamine 6G by interaction with the nanoparticles was probed, allowing us to calculate spectra that closely reproduce the experimental results. The nanosystem was tested in cell culture experiments, showing cell internalization and also proving to be completely biocompatible, as no cell death was observed. Using a NIR laser, SERS signals could be detected even from inside cells, proving the applicability of this nanosystem as a biocompatible SERS probe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...